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ABSTRACT 

 

For quasi-static applications such as land subsidence or the initial stage of embankment 

failure, the rate effect is small. In these cases the bulk friction of the granular material is 

most conveniently obtained by a direct shear test. However, commercially available direct 

shear apparatus are small in relation to particle size for a wide range of applications. In 

parallel with this situation, granular materials handling systems face more troubles than 

their fluid counterparts. Numerical simulations of granular systems offer a way to make 

improvements. Constrained by the simulation time requirement, much smaller number of 

particles than reality can be incorporated in these simulations. As a result, either the size of 

the equipment has to be reduced, or the size of the particles has to be enlarged in these 

simulations. To investigate the possibility of using direct shear apparatus for a wider range 

of particles, and to shed some light on scaling laws for such an apparatus, a direct shear test 

is performed in this study using Discrete Element Models to study the scaling effect. It is 

found that by scaling properly, it is possible to use direct shear box for bulk friction 

measurement when the size of the box is roughly 10 times the particles size. It is also 

shown that overburden plays an important role in the bulk friction. Lastly, it is surprising to 

observe that contact friction affects the scaling law in such a way that the lower the contact 

friction, the more dependent the bulk friction is to the shear box size.  
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I. Introduction 
 

Computational tools for engineering design involving liquid and gases are mature enough to 

replace traditional physical tests in many cases. For solid handling there is still a long way 

to go to achieve this goal. The lack of constitutive law forces a direct simulation of each 

individual particle in a large system. Limited by computing power the number of particles 

that can be handled in realistic time is much lower than in physical tests. Therefore a 

scaling law is needed to bridge the results from a small number of particles to reality. One 

of the most important parameters in granular mechanics is the bulk friction coefficient.  

A direct shear box is a standard apparatus used to measure shear strength parameters 

and expansion properties of soil, rock, sand, and other granular materials (some recent 

works include: Abou-Chakra and Tuzun, 1999; Dittes and Labuz, 2002; Ling and Dietz, 

2004). The most significant advantages of the direct shear box are that it is simple to build 

and operate, and tests can be preformed in a short time. However shortcomings are that the 

deformation and stress fields are strongly non-uniform in the material, contact area 

diminishes during shearing, stress concentrations occur at ends, principle stresses are not 

known, and rotation of the top loading plate takes place (Tejchman, 2005). Some 

continuum numerical simulations of direct shear tests were carried out in the past decade 

(Cividini and Gioda, 1992; Tejchman, 2005). Recently, the 2D Discrete Element Model 

(DEM) was adopted in the direct shear tests (Thornton and Zhang, 2003).  

Disks, spheres, or ellipses, are commonly used in the (DEM) to simulate granular 

materials. However these ideal shapes do not describe the real granular materials well. By 

bonding or clumping disks or spheres together, different particle shapes were generated to 

create realistic shapes (e.g. Peters and Dziugys, 2002; Cheng et al., 2003). In this study, a 

paired particle with 25% or 50% overlap is constructed to model the irregularity of real 

granular materials. We will study the scaling effect in direct shear tests of these clumped 

particles. The quaternion method will be adopted to simulate the rotation of the clumps 

between local and global coordinates.  

II. Discrete Element Model with Clumped particles 

In the DEM simulation of clumped particles, the local coordinate system is more 

convenient to model particle rotation, and the global coordinate system is used to define the 

particle location, and the particle interaction. The notations and relations between the local 

and global coordinates of one clumped particle are shown in Fig. 1. The global and local 

coordinates have also been called as space and body frames.  

If a clumped-particle is formed with overlapping spheres, its total mass, center of 

mass, and moment of inertia are difficult to calculate analytically. Here, a numerical method 

is adopted. The strategy is to first define a domain large enough to contain the clump, and 

numerically the clump is discretized into small cubes of volume zyx ∆×∆×∆ . For each 

cube we detect if it is inside the clump by measuring the distance between the cube and the 

centers of the spheres. The contribution of the mass and moment of inertia is accumulated 

from each of the small cubes that are inside the clump. With this method, the total mass, 
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mass center and moment of inertia can be determined with  
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Fig. 1 Local and global coordinates in the DEM simulation of clumped particles. 
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The accuracy of the numerical results increases with decreasing cube size. When we set 

x∆ = y∆ = z∆ =Dmin/20, the calculated clump mass, mass center and moment of inertia are 

compared with the analytical solution for simple cases of none overlapping spheres. The 

precision was found to be higher than 99%.  

With the quaternion method, the torque, rotational velocity and other vectors can be 

transformed from the rotating local frame to a global frame. If the orientation of a clump is 

specified, the relation between the fixed space system e
s and the moving body system e

b is 

linked by the rotation matrix A (Allen and Tildesley, 1987) 

 sb
eAe ⋅=         (4) 

sb
eAe ⋅= T        (5) 

The rotation matrix satisfies T-1 AA = . The matrix A can be determined with Euler angles 

or quaternions. A quaternion Q is a set of four scalar quantities 

( )3210 ,,, qqqq=Q       (5) 

which satisfy the constraint 
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In terms of the quaternions, the rotation matrix can be written as  
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In the body frame, the rotational acceleration becomes 
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where Ixx, Iyy, and Izz are the three principal moments of inertia in the body frame. The 

moment in the body frame is related to that in the space frame by 
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here b
xM , b

yM  and b
zM  are the moments in the body frame, and s

xM , s
yM  and s

zM  are the 

moments in the space frame. The moments in the space frame can be determined from 

collisions with other clumps. 

When the rotational velocity in a body frame is calculated, the rotational velocity in 

a space frame can be transformed as 
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The quaternions for each clump satisfy the equation of motion (Allen and Tildesley, 1987; 

Kosenko, 1998) 
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With the conversion between the global and local coordinates described above, the motion, 

especially the rotation of clumped particles, can be simulated using an explicit finite 

difference scheme.   
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III. DEM Simulation of Direct Shear Tests of Clumped Particles  

The direct shear apparatus includes an upper box and a lower box, separated by a small gap. 

At the top of the upper box a floating plate is applied which is free to move vertically. A 

normal load may be applied to the floating plate to simulate different overburden conditions. 

The lower box is subject to a prescribed constant velocity in the horizontal direction. Fig. 2 

shows the schematics of this apparatus.  
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Fig. 2 Sketch of Forces applied on the upper shear box. 

 

Because of the geometry, the shear plane of the granular material resides in the gap 

between the top and bottom half of the apparatus. On this plane, the normal force is the sum 

of the normal load P, the weight of the floating plate, and the weight of the granular 

materials in the upper box. The shear force can be found from the force balance between the 

sum of normal forces on the left and right walls and the shear forces on the floating top 

plate and the front and back side walls, as shown in Fig. 2. Therefore, on the shear plane, 

we have 

MP WWPF ++=N    ( )∑
=

+=
wall

1

S

N

iw
iXiX SNF    (14) 

where FN and FS are the normal and shear force acting on the shear plane, respectively. P is 

the external normal load, WP and WM are the weight of the floating plate and the weight of 

the interior particles in the upper box.  iwXN  and iwXS  are the normal and shear force in x 

direction between the particles and inside wall i of upper box. There are four side walls and 

one top wall in the upper box, and the total wall number Nwall = 5. The normal and shear 

stresses are 

LB

FN=zzσ    
LB

FS=xzσ       (15) 

where L  and B  are the length and width of the box cross-section respectively. The bulk 

friction coefficient on the shearing plane is  
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To initiate the simulation of a packed granular material, the particles are set to half 

of their real size initially, so that a random distribution with desired number of particles is 

possible. After the packing, the particles grow to the final size slowly. In the growth process, 

the particles contact each other to re-organize their location and orientation automatically. 

After the growth phase, the external normal load is applied on the top plate to further pack 

the particles. The shear process starts when the particles come to a steady state under this 

normal load. Therefore, we have mainly three stages in the shear test simulation - growth, 

loading and shear.  

To study the scaling effect, dimensionless parameters are defined as 
D

L
L =* , 

D

x
x =* ,

D

z
z =* , 

Dg

v
v =* ,

ρDg

E
E =* ,

ρ
σ

σ
Dg

=* ,
ρ

τ
τ

Dg
=* . Here L is the box size, D 

is the mean particle diameter, x is the horizontal shear displacement, z is the vertical 

displacement, v is the shear rate, E is the Young’s modulus, g is gravity, ρ is the particle 

density, 
�
 is the applied normal stress, and τ is the simulated shear stress.  In the above, x, v, 

E, g, ρ, 
�
are input variables that can be assigned, and z and τ are dependent variables that 

result from the input. We first test the scaling effect by keeping the dimensionless 

parameters *L , *x , *v , *E , *σ  constant, and using various particle diameters D = αD0 

(here α = 0.1, 1, 10, 100 and D0 = 7.31mm) to simulate the shear stress and thus the bulk 

friction. The parameters used for scaling index α = 1.0 are listed in Table 1. In the 

simulation, a uniformly distributed size from a minimum of 0.8D to a maximum of 1.2D is 

used to generate the clumping particles. Each clump consists of equal size pairs with a 25% 

overlap. 

A snapshot of the simulation is given in Fig. 3. The simulated bulk friction and 

dimensionless vertical displacement versus shear distance are plotted in Fig. 3. When 

conducting the scaling tests, we used the following rules for keeping the dimensionless 

parameters constant in all tests: length factor~α, area factor~ α2, mass factor~ α3, force 
factor~ α3, stress factor~α. 

Table 1.  Parameters used in the DEM simulation 

Variables Definition Values 

L, B Upper and lower box Length, and width 10 cm 

H1, H2 Upper and lower box height 3.71 cm 

µp Contact friction of particles  0.8 

ep Restitution among particles 0.7 

µp-w Friction between particle and side wall  0.2 

ep-w Restitution between particle and side wall 0.9 

µp-w Friction between particle and top/bottom porous cover 1.0 

U Shear velocity in experiment 10.0 mm/s 
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S Shear deformation 10 mm 

P Normal load 500 N 

M Total Mass of shear materials 1.0 kg 

m Single Particle Mass 0.8 ~ 1.2 g 

ρ Density 2.545×10
3
 kg/m

3
 

E Young’s modulus 58.0 MPa 

Nc Clump number 993 

 

Fig. 3 A snapshot of the direct shear box filled with clumped-particles in the DEM simulation. 
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Fig. 4 (a) Bulk friction and (b) dimensionless vertical displacement results under various scales. 

The shear induced expansion is obvious from Fig. 4(b). The dimensionless vertical 

displacements are very close under different scales. The bulk friction coefficients shown in 

Fig. 4(a) increase with the shear displacement, then approach their peaks at about 2. The 

(a) 

(b) 
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averaged bulk friction coefficients in the range from 2 ~ 3 are 1.60, 1.66, 1.72 and 1.50 

when the scaling factor α = 0.1, 1, 10 and 100, respectively. More tests were carried out 

with different initial packings. It was found that the simulated bulk friction had a variation 

around 10% of the mean, regardless of the scaling factor. Therefore, it can be concluded 

that the bulk friction coefficients are similar under various scales, provided that all 

dimensionless parameters are kept constant in different scales. 

It is interesting to note that the bulk friction coefficient is about twice the contact 

friction between particles. Using single disk shaped particles, direct shear tests were 

performed to simulate sand (Thornton and Zhang, 2001). They found that by using a 

contact friction coefficient µp = 0.7, the simulated bulk friction was around 0.46, less than 

the contact friction coefficient. Therefore, the added friction due to interlocking between 

these clumped particles is very significant. This additional friction cannot be modeled with 

spheres or disks.  

Many granular material handling systems are built using smaller scale prototypes, 

where the normal load is drastically lower than the scaled-up facility. Therefore a natural 

question to ask is how the bulk friction depends on the overburden. In order to study the 

effect of overburden, we change the applied normal load but keep all other parameters 

constant. The scaling factor is fixed at α = 1.0. The direct shear tests are simulated with σ  
equals to 5.0, 50, 500 and 5000 kPa under the action of normal loads of 50, 500, 5000 and 

50000N, respectively. The other parameters are all keep constant except the external normal 

load. The simulated vertical displaces and bulk friction coefficients are plotted in Fig. 5. 

From the vertical displacements, the shear expansion is strongly dependent on the normal 

load. Not surprisingly the higher the normal load the smaller the expansion. Moreover, the 

bulk friction coefficient decreases with increasing normal stress. The phenomena have been 

observed in the lab tests of direct shear tests (Cividini and Gioda, 1992; Ling and Dietz, 

2004). 

The reason for scale dependence or the lack of such dependence is an interesting 

research topic. It is conceivable that granular materials possess other internal length scales 

than the most obvious one: the particle size. Therefore, there are other important length 

scales for granular material handling systems than L and D as listed in the beginning of this 

study. For a packed system, the most obvious candidate for this additional length scale is 

the force-chain (Peters et al., 2005) structure. In spite of lacking a quantitative description 

of a force chain, it is easy to imagine that as the scale of the box becomes small relative to 

the particles size, force chains may span the whole apparatus. When this happens the size of 

the apparatus will affect the result of the measurement. It is also easy to imagine that 

contact friction plays an important role in building the force chains in a granular material. 

Therefore we suspect that the scaling effect may be influenced by the contact friction. To 

study this, we investigate the direct shear results using different contact friction and 

different box size, while keeping the particle size constant. Namely, we change only *L  

and µp, but keep *v , *E , *σ  constant. In these simulations, the clumped particle is 

constructed with 50% overlap, the shear rate is 30 mm/s, and the Young’s Modulus is 20 

MPa. The other parameters are used as listed in Table 1.  The results are shown in Fig. 6. 
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Fig. 5 (a) Bulk friction and (b) dimensionless vertical displacement results under different normal 

stresses. 

 

From the results of Fig. 6, it is seen that as the box size increases, the bulk friction does 

approach a constant independent of the box size. Therefore, it is hopeful that direct shear 

test using small shear boxes may produce useful results for larger particles. It is also 

encouraging that DEM simulations that use large particles to simulate numerous small 

particles in a real system may also produce useful results, when proper scaling is used, such 

that scale dependence no longer play a role. However, it is surprising to see that no low 

contact friction, the scale dependence lasts longer than the higher friction cases. Our 

conjecture on the force chain apparently does not capture the complete picture of the 

internal length scale. 

IV.  Conclusions 

The direct shear tests filled with clumped-particles were simulated under constant shear 

velocity and normal load with 3D DEM. It was found that under proper scaling, the bulk 

friction is independent of the scale of the apparatus. The normal load plays a significant role 

in the bulk friction, the higher the load the lower the bulk friction. Additional length scale 

was investigated by studying the bulk friction reaction to contact friction and shear box size. 

It was found that for each contact friction, there is a limiting size of the box, beyond which 

the box size no longer affect the bulk friction.  

(b) 

(a) 
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Fig. 6 Simulated bulk friction under different contact friction and box size. 
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